当前位置:首页 / AI追踪系统应用于新型冠状病毒感染疑似患者出院后随访的效果
大数据与生物信息学 | 更新时间:2024-07-18
|
AI追踪系统应用于新型冠状病毒感染疑似患者出院后随访的效果
Effect of the AI tracking system in the post-discharge follow-up of patients with suspected novel coronavirus infection

内科 202419卷03期 页码:308-312

作者机构:南方医科大学深圳医院,广东省深圳市 510086

DOI:10.16121/j.cnki.cn45⁃1347/r.2024.03.15

  • 中文简介
  • 英文简介
  • 参考文献

目的 探讨人工智能(AI)追踪系统在新型冠状病毒感染疑似患者出院后随访的效果。方法 借助某AI追踪系统,制定新型冠状病毒感染疑似患者出院后随访追踪语音模板,并对患者实施AI追踪随访。结果 全院共需追踪患者203例,需随访1 421人次,成功追踪随访患者202例(99.5%),成功随访1 355人次(95.4%)。共追踪随访发热患者12例(5.9%),咳嗽患者41例(20.2%,其中36例较前好转、1例加重、4例无改变)。AI追踪随访患者失败后采取人工追踪随访66人次,平均每位患者持续追踪6.7 d。结论 AI追踪系统应用于新型冠状病毒感染疑似患者出院后的追踪随访,可节约随访时间,提高工作效率,使疫情管控工作更加高效和智能,有效提升疫情防控力度。

Objective To explore the effect of the artificial intelligence (AI) tracking system in the post-discharge follow-up of patients with suspected novel coronavirus infection. Methods With the help of an AI tracking system, a voice template was developed for the post-discharge follow-up tracking of patients with suspected novel coronavirus infection, with which the AI tracking follow-up was implemented in the patients. Results Of 203 patients and 1,421 person-time needed to be followed up in the hospital, 202 patients (99.5%) and 1,355 person-time (95.4%) were successfully followed up. A total of 12 patients (5.9%) with fever and 41 patients with cough (20.2%, 36 cases improved, 1 case aggravated, and 4 cases did not change afterwards) were followed up. After the AI tracking follow-up failed, 66 person-time were followed up manually, with an average of 6.7 days of continuous follow-up per patient. Conclusion In the post-discharge follow-up of patients with suspected novel coronavirus infection, the AI tracking system can save the follow-up time, improve work efficiency, make epidemic control more efficient and intelligent, and effectively improve epidemic prevention and control efforts.

203

浏览量

32

下载量

0

CSCD

工具集
Baidu
map